Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Overcoming scale-up challenges for nanostructured photoelectrodes via one-step interface engineeringScaling up photoelectrochemical (PEC) devices for green hydrogen production is a significant challenge that requires robust and cost-effective production methods. In this study, hematite photoelectrodes has been synthesized using a cost-effective polymeric precursor solution, resulting in homogeneous ultra-thin films (~125 nm) with areas up to 200 cm2. We observed a substantial photocurrent drop as photoelectrode area increases, addressed by modifying the precursor solution with Hf4+. This modification improves the morphology and films adherence, leading to simultaneous grain|grain interface segregation and a modified FTO|hematite interface. As a result, film conductivity increases, reducing the photocurrent drop at larger photoelectrode areas. The improved charge separation and surface charge injection efficiencies allows a homogeneous photocurrent of 1.6 mA cm⁻2 at 1.45V across a 15.75 m2 electrode area, using less than 70 μg of photoactive material. Cost analysis study indicates that this low-energy fabrication method is a significant step forward in green hydrogen production, contributing to sustainable and efficient green hydrogen technologies.more » « less
-
Hematite nanostructures are strong candidates for the development of sustainable water splitting technologies. However, major challenges exist in improving charge density and minimizing charge recombination rates for a competitive photoelectrochemical performance based on hematite without compromising sustainability aspects. Here we develop a synthetic strategy to leverage earth-abundant Al3+ and Zr4+ in a dual-chemical modification to synergistically minimize small polaron effects and interfacial charge recombination. The solution-based method simultaneously induces Al3+ doping of the hematite crystal lattice while Zr4+ forms interfacial excess, creating a single-phased homogeneous nanostructured thin film. The engineered photoanode increased photocurrent from 0.7 mA cm-2 for pristine hematite up to 4.5 mA cm-2 at 1.23 V and beyond 6.0 mA cm-2 when applying an overpotential of 300 mV under simulated sunlight illumination (100 mW cm-2). The results demonstrate the potential of dual-modification design using solution-based processes to enable sustainable energy technologies.more » « less
-
The work demonstrates a three-fold increase in photoelectrochemical efficiency of hematite nanorods as a result of the combination of Hafnium surface doping and the incorporation of a ZrO2 underlayer on FTO. While the ZrO2 layer reduced the electron loss from the back-injection into the FTO contact support, Hafnium surface doping did not significantly alter the hematite lattice structure. But rather, Hafnium induced nanorod diameter reduction from 32 ± 2 and 26 ± 2 nm, with a consequent increase in the active surface area. The linear sweep voltammetry measurements with 100 mW cm−2 illumination in a 500 nm photoanode thickness showed a photocurrent density of 2.07 mA cm−2 at 1.23 V in a reversible hydrogen electrode (RHE). The value contrasts with the bare hematite rods (0.75 mA cm−2), highlighting the photoanode design's role in improving solar power hydrogen production.more » « less
An official website of the United States government
